Algoritm de calcul al derivatei într-un punct

Algoritm de calcul al derivatei pași clari

Pașii (simplu)

1) Alegi o creștere \( \displaystyle \Delta x \)

2) Calculezi \( \displaystyle \Delta f(x_0)=f(x_0+\Delta x)-f(x_0) \)

3) Formezi raportul \( \displaystyle \frac{\Delta f(x_0)}{\Delta x} \)

4) Calculezi limita când \( \displaystyle \Delta x\to 0 \)

\( \displaystyle f'(x_0)=\lim_{\Delta x\to 0}\frac{\Delta f(x_0)}{\Delta x} \)

Exemplu rezolvat

Determină derivata funcției \( \displaystyle f(x)=x^2-2x+1 \) (prin definiție)

\( \displaystyle \frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x} \)

\( \displaystyle =\frac{x^2+2x\Delta x+\Delta x^2-2x-2\Delta x+1-x^2+2x-1}{\Delta x}=\frac{2x\Delta x+\Delta x^2-2\Delta x}{\Delta x} \)

\( \displaystyle =2x+\Delta x-2 \Rightarrow f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x-2)=2x-2 \)

Deci \( \displaystyle f'(x)=2x-2 \)

Determină \( \displaystyle f'(x) \) prin definiție pentru \( \displaystyle f(x)=x^2 \) \( \displaystyle f'(x)=2x \)
\( \displaystyle \frac{(x+\Delta x)^2-x^2}{\Delta x}=\frac{2x\Delta x+\Delta x^2}{\Delta x}=2x+\Delta x \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x)=2x \)
Determină \( \displaystyle f'(x) \) prin definiție pentru \( \displaystyle f(x)=3x+2 \) \( \displaystyle f'(x)=3 \)
\( \displaystyle \frac{3(x+\Delta x)+2-(3x+2)}{\Delta x}=\frac{3\Delta x}{\Delta x}=3 \)
\( \displaystyle f'(x)=3 \)
Determină \( \displaystyle f'(x) \) prin definiție pentru \( \displaystyle f(x)=x^2+1 \) \( \displaystyle f'(x)=2x \)
\( \displaystyle \frac{(x+\Delta x)^2+1-(x^2+1)}{\Delta x}=\frac{2x\Delta x+\Delta x^2}{\Delta x}=2x+\Delta x \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x)=2x \)
Determină \( \displaystyle f'(x) \) prin definiție pentru \( \displaystyle f(x)=x^2-4x \) \( \displaystyle f'(x)=2x-4 \)
\( \displaystyle \frac{(x+\Delta x)^2-4(x+\Delta x)-(x^2-4x)}{\Delta x}=\frac{2x\Delta x+\Delta x^2-4\Delta x}{\Delta x}=2x+\Delta x-4 \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x-4)=2x-4 \)
Determină \( \displaystyle f'(x) \) prin definiție pentru \( \displaystyle f(x)=x^2-2x+1 \) \( \displaystyle f'(x)=2x-2 \)
\( \displaystyle \frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x}=\frac{2x\Delta x+\Delta x^2-2\Delta x}{\Delta x}=2x+\Delta x-2 \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x-2)=2x-2 \)