Algoritm de calcul al derivatei într-un punct
1) Alegi o creștere \( \displaystyle \Delta x \) 2) Calculezi \( \displaystyle \Delta f(x_0)=f(x_0+\Delta x)-f(x_0) \) 3) Formezi raportul \( \displaystyle \frac{\Delta f(x_0)}{\Delta x} \) 4) Calculezi limita când \( \displaystyle \Delta x\to 0 \) \( \displaystyle f'(x_0)=\lim_{\Delta x\to 0}\frac{\Delta f(x_0)}{\Delta x} \) Determină derivata funcției \( \displaystyle f(x)=x^2-2x+1 \) (prin definiție)
\( \displaystyle \frac{f(x+\Delta x)-f(x)}{\Delta x}=\frac{(x+\Delta x)^2-2(x+\Delta x)+1-(x^2-2x+1)}{\Delta x} \)
\( \displaystyle =\frac{x^2+2x\Delta x+\Delta x^2-2x-2\Delta x+1-x^2+2x-1}{\Delta x}=\frac{2x\Delta x+\Delta x^2-2\Delta x}{\Delta x} \)
\( \displaystyle =2x+\Delta x-2 \Rightarrow f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x-2)=2x-2 \)
Deci \( \displaystyle f'(x)=2x-2 \)Algoritm de calcul al derivatei pași clari
Pașii (simplu)
Exemplu rezolvat
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x)=2x \)
\( \displaystyle f'(x)=3 \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x)=2x \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x-4)=2x-4 \)
\( \displaystyle f'(x)=\lim_{\Delta x\to 0}(2x+\Delta x-2)=2x-2 \)