Trigonometrie: definitii

1) Cercul Trigometric

Cercul trigonometric este un instrument grafic utilizat pentru a înțelege semnele și valorile funcțiilor trigonometrice în diferite cadrane:

Sinusul si cosinusul reprezinta niste rapoarte. Sinusul unui unghi este raportul dintre latura opusa si ipotenuza triunghiului dreptunghic in care se afla unghiul dat. Cosinusul unui unghi insa, reprezinta raportul dintre cateta alaturata unghiului si ipotenuza triunghiului dreptunghic in care este definit unghiul dat.

Cercul Trigometric

În funcție de cadranul în care se află unghiul:
  • Cadranul I: toate funcțiile sunt pozitive.
  • Cadranul II: \(\sin\) este pozitivă.
  • Cadranul III: \(tg\) și \(ctg\) sunt pozitive.
  • Cadranul IV: \(\cos\) este pozitivă.

2) Tabelul Valorilor Trigonometrice

Tabelul următor prezintă valorile funcțiilor trigonometrice pentru unghiuri de referință în grade și radiani:

\(\alpha\) 30° 45° 60° 90°
\(\sin\alpha\) \(0\) \(\frac{1}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{\sqrt{3}}{2}\) \(1\)
\(\cos\alpha\) \(1\) \(\frac{\sqrt{3}}{2}\) \(\frac{\sqrt{2}}{2}\) \(\frac{1}{2}\) \(0\)
\(tg\alpha\) \(0\) \(\frac{\sqrt{3}}{3}\) \(1\) \(\sqrt{3}\) -
\(ctg\alpha\) - \(\sqrt{3}\) \(1\) \(\frac{\sqrt{3}}{3}\) \(0\)

3) Identități Trigonometrice

În trigonometrie, relațiile dintre funcțiile trigonometrice sunt esențiale. Iată câteva identități fundamentale:

  • \( \sin^2\alpha + \cos^2\alpha = 1 \)
  • \(\displaystyle tg\alpha = \frac{\sin\alpha}{\cos\alpha} \)
  • \(\displaystyle ctg\alpha = \frac{\cos\alpha}{\sin\alpha} \)
  • \( tg\alpha \cdot ctg\alpha = 1 \)
  • \( \sin(2\alpha) = 2\sin\alpha\cos\alpha \)
  • \( \cos(2\alpha) = \cos^2\alpha - \sin^2\alpha \)

4) Observații Importante

  • Orice unghi de pe cercul trigonometric poate fi reprezentat în radiani (\( \pi = 180^\circ \)).
  • Funcțiile trigonometrice se repetă periodic cu \( 2\pi \) radiani (\( 360^\circ \)).

5) Alte formule utile

\[ \begin{array}{l} \sin x = a \Leftrightarrow S = \left\{ (-1)^{k} \arcsin a + \pi k \mid k \in \mathbb{Z} \right\}, \, a \in [-1, 1]; \\ \operatorname{tg} x = a \Leftrightarrow S = \left\{ \operatorname{arctg} a + \pi k \mid k \in \mathbb{Z} \right\}, \, a \in \mathbb{R}; \\ \cos x = a \Leftrightarrow S = \left\{ \pm \arccos a + 2 \pi k \mid k \in \mathbb{Z} \right\}, \, a \in [-1, 1]; \\ \operatorname{ctg} x = a \Leftrightarrow S = \left\{ \operatorname{arcctg} a + \pi k \mid k \in \mathbb{Z} \right\}, \, a \in \mathbb{R}. \end{array} \]
\[ \cos ^{2} \alpha = \frac{1+\cos 2 \alpha}{2} ; \quad \quad \sin ^{2} \alpha = \frac{1-\cos 2 \alpha}{2} \]
Formule pentru \( \sin \frac{\alpha}{2}, \cos \frac{\alpha}{2}, \operatorname{tg} \frac{\alpha}{2} \)
\[ \begin{array}{ll} \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1-\cos \alpha}{2}} ; & \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+\cos \alpha}{2}} \\ \operatorname{tg} \frac{\alpha}{2} = \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}}, \alpha \neq (2n+1) \pi, n \in \mathbb{Z} ; & \operatorname{tg} \frac{\alpha}{2} = \frac{1-\cos \alpha}{\sin \alpha}, \alpha \neq \pi n, n \in \mathbb{Z}. \end{array} \]
\[ \begin{array}{l} \sin (\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta, \quad \alpha, \beta \in \mathbb{R} \\ \cos (\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta, \quad \alpha, \beta \in \mathbb{R} \\ \operatorname{tg}(\alpha \pm \beta) = \frac{\operatorname{tg} \alpha \pm \operatorname{tg} \beta}{1 \mp \operatorname{tg} \alpha \operatorname{tg} \beta}, \quad \alpha, \beta \in \mathbb{R}, \text{ astfel încât există } \\ \operatorname{tg} \alpha \operatorname{tg} \beta \text{ şi } 1 \mp \operatorname{tg} \alpha \operatorname{tg} \beta \neq 0. \end{array} \]
\[ \begin{array}{ll} \sin 2 \alpha = 2 \sin \alpha \cos \alpha; & \cos 2 \alpha = \cos^2 \alpha - \sin^2 \alpha \\ \sin 3 \alpha = 3 \sin \alpha - 4 \sin^3 \alpha; & \cos 3 \alpha = 4 \cos^3 \alpha - 3 \cos \alpha \end{array} \]

Exercitiu rezolvat

Fie \( \sin \beta = 0.6 \), unde \( 0 < \beta < \frac{\pi}{2} \). Aflați valorile pentru \( \cos \beta \), \( tg \beta \), și \( ctg \beta \).

  1. Determinarea lui \( \cos \beta \):
  2. Folosim identitatea trigonometrică fundamentală:

    \[ \sin^2 \beta + \cos^2 \beta = 1 \]

    Înlocuim \( \sin \beta = 0.6 \):

    \[ (0.6)^2 + \cos^2 \beta = 1 \] \[ 0.36 + \cos^2 \beta = 1 \] \[ \cos^2 \beta = 1 - 0.36 = 0.64 \] \[ \cos \beta = \pm \sqrt{0.64} = \pm 0.8 \]

    Deoarece \( 0 < \beta < \frac{\pi}{2} \), \( \cos \beta > 0 \), deci:

    \[ \cos \beta = 0.8 \]
  3. Determinarea lui \( tg \beta \):
  4. Folosim relația dintre \( \sin \) și \( \cos \):

    \[ tg \beta = \frac{\sin \beta}{\cos \beta} \]

    Înlocuim valorile calculate:

    \[ tg \beta = \frac{0.6}{0.8} = 0.75 \]
  5. Determinarea lui \( ctg \beta \):
  6. Folosim relația dintre \( tg \) și \( ctg \):

    \[ ctg \beta = \frac{1}{tg \beta} \]

    Înlocuim valoarea lui \( tg \beta \):

    \[ ctg \beta = \frac{1}{0.75} = \frac{4}{3} \approx 1.33 \]

Rezultate finale:

  • \( \cos \beta = 0.8 \)
  • \( tg \beta = 0.75 \)
  • \( ctg \beta = \frac{4}{3} \approx 1.33 \)

Exemplu complex rezolvat

Să calculăm valoarea expresiei:

\(\displaystyle E(\alpha) = \frac{4}{5} tg \alpha + \frac{5}{12} \sin(2 \alpha) \), unde \(\displaystyle \cos \alpha = -\frac{4}{5} \) și \(\displaystyle \alpha \in \left(-\pi, -\frac{\pi}{2}\right) \).

Rezolvare

  1. Din cercul trigonometric, avem \( \sin^2 \alpha + \cos^2 \alpha = 1 \):
    \( \sin^2 \alpha = 1 - \left(-\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \)

    Deci, \( \sin \alpha = -\frac{3}{5} \) (pentru că \( \sin \alpha < 0 \)).

  2. Calculăm termenii din \( E(\alpha) \):
    \( tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-\frac{3}{5}}{-\frac{4}{5}} = \frac{3}{4} \)
    \( \sin(2\alpha) = 2 \sin \alpha \cos \alpha = 2 \cdot \left(-\frac{3}{5}\right) \cdot \left(-\frac{4}{5}\right) = \frac{24}{25} \)
  3. Substituim în expresie:
    \( E(\alpha) = \frac{4}{5} \cdot \frac{3}{4} + \frac{5}{12} \cdot \frac{24}{25} \)
    \( E(\alpha) = \frac{3}{5} + \frac{2}{5} = 1 \)

Rezultat

\( R: E(\alpha) = 1 \)

Exerciții

1
\(\text{Fie} \, \sin \alpha = 0.8; \, 0 < \alpha < \displaystyle \frac{\pi}{2}. \, \text{Aflați} \, \cos \alpha; \, tg \alpha; \, ctg \alpha.\)
2
\(\text{Fie} \, \cos \alpha = -\displaystyle \frac{24}{25}; \, \pi < \alpha < \displaystyle \frac{3\pi}{2}. \, \text{Aflați} \, \sin \alpha; \, tg \alpha; \, ctg \alpha.\)
3
\(\text{Fie} \, tg \alpha = 2, \, \pi < \alpha < \displaystyle \frac{3\pi}{2}. \, \text{Aflați} \, ctg \alpha; \, \sin \alpha; \, \cos \alpha.\)
4
\(\text{Fie} \, ctg \alpha = -\displaystyle \frac{1}{3}, \, \displaystyle \frac{3\pi}{2} < \alpha < 2\pi. \, \text{Aflați} \, tg \alpha; \, \sin \alpha; \, \cos \alpha.\)
5
\(\text{Determinați} \, tg \alpha, \, \text{dacă} \, \sin \alpha = \displaystyle \frac{4}{5} \, \text{și} \, \alpha \in \left(\displaystyle \frac{\pi}{2}; \pi\right).\)
6
Determinați \(ctg(\alpha)\), dacă \(\cos(\alpha) = -\displaystyle \frac{8}{17}\) și \(\alpha \in \left(\pi, \displaystyle \frac{3\pi}{2}\right)\).