Item 10 - toate variantele posibile
Exerciții
1
Fie funcția \( f : D \to \mathbb{R}, \, f(x) = \sqrt{x^2 - 8x + 12} \)
a) Calculați \(\displaystyle \lim_{x \to \infty} \frac{1}{f(x)} \).
b) Studiați monotonia funcției.
c) Calculați volumul corpului de rotatie a functiei \( f \) in jurul axei \(O_x\).
a) Calculați \(\displaystyle \lim_{x \to \infty} \frac{1}{f(x)} \).
b) Studiați monotonia funcției.
c) Calculați volumul corpului de rotatie a functiei \( f \) in jurul axei \(O_x\).
2
Fie funcția \(f : (0; +\infty) \to \mathbb{R}, f(x) = x^3 \ln x\):
a) Determinați punctele de extrem local ale funcției \(f\).
b) Scrieți ecuația tangentei la graficul funcției \(f\) în punctul \(x_0 = 1\).
c) Calculați \(\displaystyle \lim_{x \to +\infty} \left(\displaystyle \frac{f(x)}{\ln x} - 5\right)^2\).
a) Determinați punctele de extrem local ale funcției \(f\).
b) Scrieți ecuația tangentei la graficul funcției \(f\) în punctul \(x_0 = 1\).
c) Calculați \(\displaystyle \lim_{x \to +\infty} \left(\displaystyle \frac{f(x)}{\ln x} - 5\right)^2\).
3
Se consideră funcția \( f: R \rightarrow R, f(x)=x^{3}-3 x+1 \).
a) Calculați \( L=\displaystyle \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \).
b) Determinați punctele de extrem local ale funcției \( f \).
c) Calculați \( I=\displaystyle \int_{1}^{3} \displaystyle \frac{f(x)}{x^{2}} d x \).
a) Calculați \( L=\displaystyle \lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \).
b) Determinați punctele de extrem local ale funcției \( f \).
c) Calculați \( I=\displaystyle \int_{1}^{3} \displaystyle \frac{f(x)}{x^{2}} d x \).
4
Se consideră funcţia \( f: R \backslash\{4\} \rightarrow R, f(x)=\displaystyle \frac{2 x+1}{x-4} \).
a) Determinați ecuația asimptotei orizontale a funcției \( f \).
b) Determinaţi intervalele de monotonie ale funcţiei \( f \).
c) Calculaţi integrala \( I=\displaystyle \int_{-2}^{3} f(x) d x \).
a) Determinați ecuația asimptotei orizontale a funcției \( f \).
b) Determinaţi intervalele de monotonie ale funcţiei \( f \).
c) Calculaţi integrala \( I=\displaystyle \int_{-2}^{3} f(x) d x \).
5
Fie funcția \( f : \mathbb{R} \to \mathbb{R}, \, f(x) = \displaystyle \frac{x^2}{x - 3} \).
a) Determinați punctele de extrem local ale funcției \( f \).
b) Determinați asimptota oblică la \( +\infty \) la graficul funcției \( f \).
c) Calculați: \(\displaystyle \int_1^e \frac{f(x)(x - 3)}{x^3} \, dx \).
a) Determinați punctele de extrem local ale funcției \( f \).
b) Determinați asimptota oblică la \( +\infty \) la graficul funcției \( f \).
c) Calculați: \(\displaystyle \int_1^e \frac{f(x)(x - 3)}{x^3} \, dx \).
6
Fie funcția \(\displaystyle f: \mathbb{R} \setminus \{-3\} \rightarrow \mathbb{R}, \quad f(x) = \frac{3x^{2}}{x+3} \)
a) Determinați extremele locale ale funcției \( f \).
b) Determinați asimptota oblică la \( +\infty \) a graficului funcției \( f \).
c) Calculați: \(\displaystyle \int_{4}^{64} \frac{f(x)(x+3)}{x(1+\sqrt{x})} \, dx. \)
a) Determinați extremele locale ale funcției \( f \).
b) Determinați asimptota oblică la \( +\infty \) a graficului funcției \( f \).
c) Calculați: \(\displaystyle \int_{4}^{64} \frac{f(x)(x+3)}{x(1+\sqrt{x})} \, dx. \)
7
Fie funcția \( f : \mathbb{R} \to \mathbb{R}, f(x) = \ln(x^2 + 4) \).
a) Aflați punctele de inflexiune ale funcției \( f \).
b) Fie funcția \(\displaystyle g : \mathbb{R} \setminus \{0\} \to \mathbb{R}, g(x) = \frac{f(x)}{x} \). Calculați asimptota orizontală la \( +\infty \) a funcției \( g \).
c) Calculați \(\displaystyle \int_{0}^{1} f(x) \, dx \).
a) Aflați punctele de inflexiune ale funcției \( f \).
b) Fie funcția \(\displaystyle g : \mathbb{R} \setminus \{0\} \to \mathbb{R}, g(x) = \frac{f(x)}{x} \). Calculați asimptota orizontală la \( +\infty \) a funcției \( g \).
c) Calculați \(\displaystyle \int_{0}^{1} f(x) \, dx \).
8
Se consideră funcția \( f: R \rightarrow R, f(x)=\displaystyle \frac{x^{3}+3 x}{x^{2}+1} \).
a) Să se determine ecuația asimptotei oblice către \( -\infty \) la graficul funcției \( f \).
b) Studiați monotonia funcției \( f \).
c) Calculați \( I=\displaystyle \int_{-1}^{1} f(x) d x \).
a) Să se determine ecuația asimptotei oblice către \( -\infty \) la graficul funcției \( f \).
b) Studiați monotonia funcției \( f \).
c) Calculați \( I=\displaystyle \int_{-1}^{1} f(x) d x \).
9
Fie \( f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 - 6x \).
a) Determinați punctele de extrem local ale funcției \( f \).
b) Determinați valoarea numerică a ariei figurii plane mărginită de graficul funcției \( f \), axa \( O_x \) și dreptele \( x = 1, x = \sqrt{3} \).
c) Fie funcția \(\displaystyle h : \mathbb{R} \setminus \{0\} \to \mathbb{R}, h(x) = \frac{f(x)}{x} \). Scrieți ecuația tangentei la graficul funcției \( h \), dacă tangenta dusă la graficul funcției formează cu direcția pozitivă a axei \( O_x \) un unghi de \( 45^\circ \).
a) Determinați punctele de extrem local ale funcției \( f \).
b) Determinați valoarea numerică a ariei figurii plane mărginită de graficul funcției \( f \), axa \( O_x \) și dreptele \( x = 1, x = \sqrt{3} \).
c) Fie funcția \(\displaystyle h : \mathbb{R} \setminus \{0\} \to \mathbb{R}, h(x) = \frac{f(x)}{x} \). Scrieți ecuația tangentei la graficul funcției \( h \), dacă tangenta dusă la graficul funcției formează cu direcția pozitivă a axei \( O_x \) un unghi de \( 45^\circ \).
10
Fie \( f : \mathbb{R} \to \mathbb{R}, \, f(x) = -x^2 + 4x\).
a) Scrieți ecuația tangentei la graficul funcției \( f \) în punctul de intersecție al graficului funcției \( f \) cu axa Oy.
b) Comparați \(\displaystyle \lim_{x \to 4} \frac{f(x)}{x - 4}\) cu \(f(e).\)
c) Fie funcția \(\displaystyle g : [0, 2] \to \mathbb{R}, \, g(x) = e^{\frac{x}{2}} \cdot \sqrt{\frac{f(x)}{4 - x}}\). Determinați valoarea numerică a volumului corpului de rotație obținut prin rotirea subgraficului funcției g în jurul axei \(O_x\).
a) Scrieți ecuația tangentei la graficul funcției \( f \) în punctul de intersecție al graficului funcției \( f \) cu axa Oy.
b) Comparați \(\displaystyle \lim_{x \to 4} \frac{f(x)}{x - 4}\) cu \(f(e).\)
c) Fie funcția \(\displaystyle g : [0, 2] \to \mathbb{R}, \, g(x) = e^{\frac{x}{2}} \cdot \sqrt{\frac{f(x)}{4 - x}}\). Determinați valoarea numerică a volumului corpului de rotație obținut prin rotirea subgraficului funcției g în jurul axei \(O_x\).
11
Fie funcția \( f: \mathbb{R} \rightarrow \mathbb{R},\ f(x) = 2 \sin^2 x - \sin 2x \).
a) Determinați soluțiile ecuației \( f(x) = 0 \) pe intervalul \( [\pi,\ 2\pi] \).
b) Pentru funcția \( f:(0,\ 2\pi) \rightarrow \mathbb{R} \), determinați o primitivă a lui \( f \) al cărei grafic trece prin punctul \( A\left( \displaystyle \frac{\pi}{2},\ \displaystyle \frac{\pi}{2} \right) \).
c) Determinați valorile reale ale parametrului \( b \) pentru care dreapta \( y = 2x + b \) este tangentă la graficul funcției \( f \) în punctul \( x_0 = \displaystyle \frac{\pi}{4} \).
a) Determinați soluțiile ecuației \( f(x) = 0 \) pe intervalul \( [\pi,\ 2\pi] \).
b) Pentru funcția \( f:(0,\ 2\pi) \rightarrow \mathbb{R} \), determinați o primitivă a lui \( f \) al cărei grafic trece prin punctul \( A\left( \displaystyle \frac{\pi}{2},\ \displaystyle \frac{\pi}{2} \right) \).
c) Determinați valorile reale ale parametrului \( b \) pentru care dreapta \( y = 2x + b \) este tangentă la graficul funcției \( f \) în punctul \( x_0 = \displaystyle \frac{\pi}{4} \).
12
Se consideră funcția \( f: R \backslash\{1\} \rightarrow R, f(x)=\displaystyle \frac{x^{2}-x+1}{x-1} \).
a) Să se scrie ecuația tangentei la graficul funcției \( f \) în punctul de abscisă \( x_{0}=3 \).
b) Determinaţi punctele de extrem local şi valorile funcţiei în punctele de extrem.
c) Să se determine primitiva \( F(x) \) a funcției \( f(x) \), graficul căreia trece prin punctul \( A(2 ; 5) \).
a) Să se scrie ecuația tangentei la graficul funcției \( f \) în punctul de abscisă \( x_{0}=3 \).
b) Determinaţi punctele de extrem local şi valorile funcţiei în punctele de extrem.
c) Să se determine primitiva \( F(x) \) a funcției \( f(x) \), graficul căreia trece prin punctul \( A(2 ; 5) \).
13
Fie funcția \( \displaystyle f : \mathbb{R} \setminus \{\pm \sqrt{2}\} \to \mathbb{R}, f(x) = \frac{x^3 - 1}{x^2 - 2} \).
a) Scrieți ecuația tangentei la graficul funcției \( f \) în punctul de intersecție al graficului funcției \( f \) cu axa \( Ox \).
b) Determinați valoarea numerică a ariei subgraficului funcției: \(\displaystyle g : [-1, 0] \to \mathbb{R}, \quad g(x) = -\frac{1}{f(x)} - \frac{2}{x^3 - 1}. \)
c) Calculați: \(\displaystyle \lim_{x \to +\infty} \left(\sqrt[3]{f(x)\left(x^2 - 2\right) + 2x^2} - x\right) \)
a) Scrieți ecuația tangentei la graficul funcției \( f \) în punctul de intersecție al graficului funcției \( f \) cu axa \( Ox \).
b) Determinați valoarea numerică a ariei subgraficului funcției: \(\displaystyle g : [-1, 0] \to \mathbb{R}, \quad g(x) = -\frac{1}{f(x)} - \frac{2}{x^3 - 1}. \)
c) Calculați: \(\displaystyle \lim_{x \to +\infty} \left(\sqrt[3]{f(x)\left(x^2 - 2\right) + 2x^2} - x\right) \)
14
Se consideră funcția \( f: \mathbb{R} \rightarrow \mathbb{R}, f(x) = \displaystyle \frac{x^2 - 3x}{\sqrt{x^2 + 1}} \).
a) Determinați ecuațiile asimptotelor oblice ale graficului funcției \( f \).
b) Să se afle punctele de extrem local ale funcției \( f \) și valorile funcției în aceste puncte.
c) Să se determine volumul corpului obținut prin rotirea în jurul axei \( O_x \) a suprafeței mărginită de axa \( O_x \) și de graficul funcției \( f \).
a) Determinați ecuațiile asimptotelor oblice ale graficului funcției \( f \).
b) Să se afle punctele de extrem local ale funcției \( f \) și valorile funcției în aceste puncte.
c) Să se determine volumul corpului obținut prin rotirea în jurul axei \( O_x \) a suprafeței mărginită de axa \( O_x \) și de graficul funcției \( f \).
15
Se consideră funcția \( f: R \rightarrow R, f(x)=\displaystyle \frac{2 e^{x}}{1+e^{2 x}} \).
a) Să se calculeze limitele \( L_{1}=\displaystyle \lim _{x \rightarrow-\infty} f(x) \) și \( L_{2}=\displaystyle \lim _{x \rightarrow+\infty} f(x) \).
b) Să se afle punctele de extrem local ale funcției \( f \).
c) Să se determine primitiva \( F(x) \) a funcţiei \( f(x) \), grafiul căreia trece prin origine.
a) Să se calculeze limitele \( L_{1}=\displaystyle \lim _{x \rightarrow-\infty} f(x) \) și \( L_{2}=\displaystyle \lim _{x \rightarrow+\infty} f(x) \).
b) Să se afle punctele de extrem local ale funcției \( f \).
c) Să se determine primitiva \( F(x) \) a funcţiei \( f(x) \), grafiul căreia trece prin origine.